Решени тестове
Вход
Учебни помагала
Контакти
Вход с Facebook
4
ти
клас
5
и
клас
6
и
клас
7
и
клас
8
и
клас
9
и
клас
12
и
клас
10
и
клас
Езици
Програмиране
Занимателни тестове
Тест по математика за VII клас, 2020-случайни въпроси
НАЦИОНАЛНО ВЪНШНО ОЦЕНЯВАНЕ ПО МАТЕМАТИКА – VII клас
Примерен тест със
с
лучайни въпроси
, модул 1
7
и
клас - Математика - Външно оценяване
1.
Стойността на израза $12 – (2,5 – b)$ при $b = –2,5$ е:
8
17
7
12
2.
Разликата 25.25 – 5.5 е равна на произведението:
20.20
25.20.5
25.25.25
20.30
3.
Турист изкачва един връх за 6 чàса със скорост $x$ km/h и се връща обратно за 3 пъти по-малко време, като се движи с 4 km/h по-бързо. Уравнението, което изразява тази зависимост, е:
$6x=2(x-4)$
$6x=3(x-4)$
$6x=2(x+4)$
$6x=3(x+4)$
4.
Коренът на уравнението $3(4 – x) = –4$ е:
$8$
$16$
$\frac{16}{3}$
$–\frac{4}{9}$
5.
Уравнението $−x^2 = (4 − x)x$ е еквивалентно на:
$0x = 4$
$4x = 1$
$x = x$
$−5x = 0$
6.
По данните от чертежа ъглите $x$ и $y$ са в отношение:
7:2
4:1
3:1
5:1
7.
На чертежа $OL$
→
е ъглополовяща на \(\sphericalangle AOC\). Ако мярката на \(\sphericalangle AOC\) е с 40% по-голяма от мярката на \(\sphericalangle BOC\), то мярката на \(\sphericalangle BOL\) е:
75°
52° 30'
127° 30'
105°
8.
Числата 1 и 0 са корените на уравнението:
$|2x−1|=−1$
$|2x−1|=1$
$−|2x−1|=1$
$|2x−1|=0$
9.
В склад доставили 5200 кг ягоди. Първия ден продали 20% от цялото количество, а втория ден – $\frac{3}{4}$ от останалото. Колко кг ягоди са продали през втория ден?
3120
3900
2600
4160
10.
Даден е равностранен триъгълник $ABC$. На лъча $BA$
→
е построена отсечката $AM = AC$ (точката $A$ е между точките $M$ и $B$) и на лъча $AB$
→
е построена отсечката $BN = BC$ (точката $B$ е между точките $N$ и $A$). Тогава \(\sphericalangle MCN\) е равен на:
180°
150°
135°
120°
11.
Изразът $a^2 + 2a – 3$ е тъждествено равен на:
$(a^2 + 1) (a – 3)$
$(2a – 1) (\frac{a}{2} + 3)$
$a (a + 3) – 3$
$(a + 3) (a – 1)$
12.
Решенията на неравенството ${2x-3 \over 3}>{2x+3 \over 2}$ са:
${x<-7,5}$
${x>3}$
${x<-17}$
${x>-7,5}$
13.
Двама работници трябва да свършат определена работа. Единият може да свърши сам работата за $4$ $h$, а другият - за $12$ $h$. Първоначално единият работи сам $t$ $min$, след което двамата довършват работата. Ако $t$ е не повече от $20$ $min$, за колко възможно най-малко часа двамата работници ще свършат работата?
$5$ $h$
$3$ $h$ $45$ $min$
$3$ $h$
$2$ $h$ $45$ $min$
14.
В $ΔABC$ $AL$ е ъглополовяща. Големината на \(\sphericalangle ALB\) е:
70°
95°
75°
85°
15.
В трамвай могат да пътуват не повече от 70 души. Половината от пътниците, качили се в трамвая на първата спирка, заели някои от седящите места. След първата спирка броят на пътниците се увеличил с 8%. Колко пътници са се качили на първата спирка?
50
54
49
42
16.
Ако едно естествено число умножим с 4 и от полученото произведение извадим 7,
ще се получи число, по-малко от 13. Сборът на всички естествени числа с това
свойство е:
15
12
10
11
17.
Бабата на Камен го поканила за обяд в 12 часá. След като избрал маршрута, той преценил, че ако тръгне в 10 часá и 30 минути с ролери, ще закъснее с 15 минути. Затова Камен тръгнал в 10 часá и 30 минути с велосипед по същия маршрут и пристигнал с 20 минути по-рано от уречения час. Скоростта на Камен с ролери е със 7 кm/h по-малка, отколкото скоростта му с велосипед. Колко километра е маршрутът от дома на Камен до дома на баба му?
25,5 km
24,5 km
24 km
25 km
18.
Ъглополовящите $AM$ и $BN$ в успоредника $ABCD$ разделят страната $DC$ на три равни части. Дължината на страната $BC$ е $a$ cm. Периметърът на успоредника $ABCD$ в сантиметри е равен на:
$10a$
$6a$
$16a$
$8a$
За равнобедрения $ΔABC$ е дадено, че \(\sphericalangle ACB\) = 120° и $AL$ е ъглополовяща на \(\sphericalangle BAC\). На страната $AB$ е взета точка $M$ така, че $AM = AC$.
19.
Намерете големината на \(\sphericalangle ALM\) в градуси.
60°
55°
35°
45°
20.
Ако $CL = m$ и $BL = n$, намерете периметърът на $ΔMBL$.
$2m + n$
$3m + n$
$m + 3n$
$2n + m$
Диаграмата показва броя на учениците стипендианти за учебната 2018/2019 и 2019/2020 година от едно училище.
21.
Какво е отношението на броя на учениците, получили стипендии през 2018/2019 година, към този през 2019/2020 година?
\( \frac 3 4\)
\( \frac 5 7 \)
\( \frac {31} {41}\)
\( \frac 4 5 \)
22.
Рaзмерът на една месечна стипендия през 2018/2019 г. е бил 105 лева, а през 2019/2020 г. – 135 лева. Всеки от стипендиантите получава стипендия през 10 от дванайсетте месеца на учебната година. Колко лева са необходими, за да се изплатят стипендиите общо за двете учебни години в училището?