Тест по математика за VII клас, 2020-случайни въпроси


НАЦИОНАЛНО ВЪНШНО ОЦЕНЯВАНЕ ПО МАТЕМАТИКА – VII клас

Примерен тест със случайни въпроси, модул 1


7и клас - Математика - Външно оценяване
1. Ако $b=\frac{1}{6}$, то $(b–1)–3(1–b)+4(2b–1)$ е равно на:







2. Изразът $(1 − 2x)^2$ е тъждествено равен на:







3. Турист изкачва един връх за 6 чàса със скорост $x$ km/h и се връща обратно за 3 пъти по-малко време, като се движи с 4 km/h по-бързо. Уравнението, което изразява тази зависимост, е:







4. Кое от неравенствата НЯМА решение?







5. Коренът на уравнението $(5 + x) (5 – x) – 5x (3 – \frac{1}{5}x) = 20$ е:







6. По данните от чертежа ъглите $x$ и $y$ са в отношение:

 

 







7. Мярката на \(\sphericalangle BCM\) от чертежа е:








8. Числата 1 и 0 са корените на уравнението:





9. Мария почиства сама жилището си за 6 чàса, а нейната майка почиства същото жилище за 4 чàса. За колко чàса ще почистят жилището, ако работят заедно?







10. Мярката на \(\sphericalangle BAC\) от чертежа е:








11. Изразът $a^2 + 2a – 3$ е тъждествено равен на:







12. По-големият корен на уравнението $(x + 2)^3 – (3x + 2) (x + 4) = x (-x – 1)^2$ е:







13. Надя, Ели, Руми и Ира продават билети за благотворителен концерт. Диаграмата показва броя на билетите, които всяка от тях е продала. Ира е продала 30 билета.

Колко билета общо са продали Надя, Ели и Руми?







14. На чертежа $ΔABC$ е равнобедрен ($AC=BC$). Външният ъгъл при върха $C$ е равен на 86° и \(\sphericalangle DAB\)=15° . Мярката на $x$ e:







15. В трамвай могат да пътуват не повече от 70 души. Половината от пътниците, качили се в трамвая на първата спирка, заели някои от седящите места. След първата спирка броят на пътниците се увеличил с 8%. Колко пътници са се качили на първата спирка?





16. Две от страните на триъгълник са с дължини 5 cm и 7 cm, а третата има дължина, която се изразява с естествено число сантиметри. Броят на триъгълниците, които отговарят на това условие, е:





17. Бабата на Камен го поканила за обяд в 12 часá. След като избрал маршрута, той преценил, че ако тръгне в 10 часá и 30 минути с ролери, ще закъснее с 15 минути. Затова Камен тръгнал в 10 часá и 30 минути с велосипед по същия маршрут и пристигнал с 20 минути по-рано от уречения час. Скоростта на Камен с ролери е със 7 кm/h по-малка, отколкото скоростта му с велосипед. Колко километра е маршрутът от дома на Камен до дома на баба му?





18. Обемът на дадения на чертежа прав кръгов конус е:







В $ΔABC$ отсечката $CH$ е височина и точка $Н$ е вътрешна за отсечката $АВ$. Точката $M$ е средата на $BC$ и $AH = CH = HM$. Точката $N$ е от отсечката $HB$ и е такава, че $HN = MN = NB$.


Даденият чертеж е само за илюстрация – не е начертан в мащаб и не е предназначен за директно измерване на дължини на отсечки и мерки на ъгли.



19. Намерете мярката на \(\sphericalangle CAB\).





20. Намерете мярката на \(\sphericalangle ABC\).







21. Намерете отношението $HN : BN$.





22. Намерете отношението на лицата $S$ΔNMH : $S$ΔCMH.







На диаграмата е показан броят на продадените леки автомобили от една автокъща през месеците април, май, юни и юли.



23. През кой от месеците продажбите на автомобили нарастват двойно спрямо предния месец?


24. Каква част от общия брой продадени автомобили за четирите месеца са тези, които са продадени през април?







25. Колко автомобила са продавани средно за месец през периода май – юли?


26. С колко процента е нараснала продажбата на леки автомобили през юли спрямо юни?