Решени тестове
Вход
Учебни помагала
Контакти
Вход с Facebook
4
ти
клас
5
и
клас
6
и
клас
7
и
клас
8
и
клас
9
и
клас
12
и
клас
10
и
клас
Езици
Програмиране
Занимателни тестове
Тест по математика за VII клас, 2020-случайни въпроси
НАЦИОНАЛНО ВЪНШНО ОЦЕНЯВАНЕ ПО МАТЕМАТИКА – VII клас
Примерен тест със
с
лучайни въпроси
, модул 1
7
и
клас - Математика - Външно оценяване
1.
Стойността на израза $12 – (6 + m)$ при $m = –12$ е:
–18
18
–6
6
2.
Ако $\frac{3^8.9^3}{27^3} = 3^m$, то $m$ е равно на:
5
2
3
4
3.
Нормалният вид на $(x – 0,2)^2$ е многочленът:
$x^2 – 0,4x + 0,04$
$x^2 + 0,04$
$x^2 – 0,4x + 0,4$
$x^2 – 0,4$
4.
Посочете невярното равенство:
$x^3 + 6x^2 + (2x + 8) = (x + 2)^3$
$\frac{a^2}{9} – \frac{2ab}{3} + b^2 = (\frac{a}{3} + b)^2$
$64 – 16a + a^2 = (8 – a)^2$
$x^2 – 6x + 9 = (x – 3)^2$
5.
Коренът на уравнението $2 – 2x = \frac{1}{2}$ е:
$1\frac{1}{4}$
$0$
$1\frac{1}{2}$
$\frac{3}{4}$
6.
По данните от чертежа ъглите $x$ и $y$ са в отношение:
3:1
7:2
5:1
4:1
7.
На чертежа правите $a$, $b$ и $c$ са успоредни. Големината на ъгъл $ x $ е:
42°
32°
18°
30°
8.
Числата 1 и 0 са корените на уравнението:
$|2x−1|=1$
$−|2x−1|=1$
$|2x−1|=−1$
$|2x−1|=0$
9.
Мария почиства сама жилището си за 6 чàса, а нейната майка почиства същото жилище за 4 чàса. За колко чàса ще почистят жилището, ако работят заедно?
1 час и 44 минути
2,04 чàса
2 чàса и 24 минути
2 чàса
10.
Мярката на \(\sphericalangle BAC\) от чертежа е:
80°
50°
10°
40°
11.
Изразът $a^2 + 2a – 3$ е тъждествено равен на:
$a (a + 3) – 3$
$(a + 3) (a – 1)$
$(a^2 + 1) (a – 3)$
$(2a – 1) (\frac{a}{2} + 3)$
12.
Коренът на уравнението $(x − 1)^2 − x(x − 1) = 0$ е:
−2
1
1
2
13.
Двама работници трябва да свършат определена работа. Единият може да свърши сам работата за $4$ $h$, а другият - за $12$ $h$. Първоначално единият работи сам $t$ $min$, след което двамата довършват работата. Ако $t$ е не повече от $20$ $min$, за колко възможно най-малко часа двамата работници ще свършат работата?
$5$ $h$
$3$ $h$ $45$ $min$
$2$ $h$ $45$ $min$
$3$ $h$
14.
На чертежа $ΔABC$ е равнобедрен ($AC=BC$). Външният ъгъл при върха $C$ е равен на 86° и \(\sphericalangle DAB\)=15° . Мярката на $x$ e:
58°
28°
43°
94°
15.
Даден е правоъгълник с дължини на страните две последователни нечетни числа. Ако намалим по-малката му страна с $4$ $cm$, а другата запазим, ще получим правоъгълник, лицето на който е с $36$ $cm^2$ по-малко от лицето на дадения правоъгълник. Лицето на дадения правоъгълник е:
$63$ $cm^2$
$80$ $cm^2$
$99$ $cm^2$
$43$ $cm^2$
16.
Две от страните на триъгълник са с дължини 5 cm и 7 cm, а третата има дължина, която се изразява с естествено число сантиметри. Броят на триъгълниците, които отговарят на това условие, е:
8
9
10
7
17.
Зар се хвърля три пъти и получените точки се събират. Броят на възможните сборове на трите числа е:
16
18
11
17
18.
Обемът на дадения на чертежа прав кръгов конус е:
$4 \pi \space см^3$
$15 \pi \space см^3$
$12 \pi \space см^3$
$36 \pi \space см^3$
Диагоналите на четириъгълника $ABCD$ ($AB$ \( \neq \) $BC$) се пресичат в точка $O$. Диагоналът $AC$ е ъглополовяща на \(\sphericalangle BAD\) и на \(\sphericalangle BCD\).
19.
Намерете мярката на \(\sphericalangle AOD\)
20.
Намерете и запишете (в кв.см) лицето на четириъгълника
ABCD.
21.
Намерете и запишете (в см) обиколката на четириъгълника
ABCD.
22.
Намерете и запишете отсечката, която е равна на отсечката
AD
.
Диаграмата показва броя на учениците стипендианти за учебната 2018/2019 и 2019/2020 година от едно училище.
23.
Какво е отношението на броя на учениците, получили стипендии през 2018/2019 година, към този през 2019/2020 година?
\( \frac 5 7 \)
\( \frac 3 4\)
\( \frac {31} {41}\)
\( \frac 4 5 \)
24.
Рaзмерът на една месечна стипендия през 2018/2019 г. е бил 105 лева, а през 2019/2020 г. – 135 лева. Всеки от стипендиантите получава стипендия през 10 от дванайсетте месеца на учебната година. Колко лева са необходими, за да се изплатят стипендиите общо за двете учебни години в училището?