Решени тестове
Вход
Учебни помагала
Контакти
Вход с Facebook
4
ти
клас
5
и
клас
6
и
клас
7
и
клас
8
и
клас
9
и
клас
12
и
клас
10
и
клас
Езици
Програмиране
Занимателни тестове
Тест по математика за VII клас, 2020-случайни въпроси
НАЦИОНАЛНО ВЪНШНО ОЦЕНЯВАНЕ ПО МАТЕМАТИКА – VII клас
Примерен тест със
с
лучайни въпроси
, модул 1
7
и
клас - Математика - Външно оценяване
1.
Изразът $x + \frac{1}{4}$ е тъждествено равен на:
$4x+1$
$x+4$
$x+0,25$
$x+1,4$
2.
Кое числово равенство е вярно?
$\frac{1}{3} + \frac{1}{5} = \frac{5+3}{3.5}$
$\frac{1}{3} + \frac{1}{5} = \frac{1+1}{3.5}$
$\frac{1}{3} + \frac{1}{5} = \frac{1}{3+5}$
$\frac{1}{3} + \frac{1}{5} = \frac{1+1}{3+5}$
3.
Многочленът $k^2 − 36$ е тъждествено равен на:
$(k − 6)(k + 6)$
$2(k − 18)$
$(k − 6)^2$
$(k − 18)(k + 18)$
4.
Посочете невярното равенство:
$x^2 – 6x + 9 = (x – 3)^2$
$64 – 16a + a^2 = (8 – a)^2$
$\frac{a^2}{9} – \frac{2ab}{3} + b^2 = (\frac{a}{3} + b)^2$
$x^3 + 6x^2 + (2x + 8) = (x + 2)^3$
5.
Уравнението $−x^2 = (4 − x)x$ е еквивалентно на:
$x = x$
$4x = 1$
$−5x = 0$
$0x = 4$
6.
На чертежа $△ABC$ е разностранен. Ако $AO = OB$, то точка $O$ лежи на:
медианата през $C$ към $AB$
симетралата на страната $AB$
ъглополовящата на \(\sphericalangle ACB\)
височината през $C$ към $AB$
7.
На чертежа правите $a$ и $b$ са успоредни. Ъгъл $α$ е равен на:
115°
105°
85°
75°
8.
Числата 1 и 0 са корените на уравнението:
$|2x−1|=−1$
$|2x−1|=1$
$−|2x−1|=1$
$|2x−1|=0$
9.
Колко грама захар има в 500 грама 5% захарен разтвор?
25
5
100
250
10.
Даден е равностранен триъгълник $ABC$. На лъча $BA$
→
е построена отсечката $AM = AC$ (точката $A$ е между точките $M$ и $B$) и на лъча $AB$
→
е построена отсечката $BN = BC$ (точката $B$ е между точките $N$ и $A$). Тогава \(\sphericalangle MCN\) е равен на:
150°
180°
135°
120°
11.
Изразът $a^2 + 2a – 3$ е тъждествено равен на:
$(a + 3) (a – 1)$
$(a^2 + 1) (a – 3)$
$a (a + 3) – 3$
$(2a – 1) (\frac{a}{2} + 3)$
12.
Коренът на уравнението $(x − 1)^2 − x(x − 1) = 0$ е:
1
1
−2
2
13.
Двама работници трябва да свършат определена работа. Единият може да свърши сам работата за $4$ $h$, а другият - за $12$ $h$. Първоначално единият работи сам $t$ $min$, след което двамата довършват работата. Ако $t$ е не повече от $20$ $min$, за колко възможно най-малко часа двамата работници ще свършат работата?
$3$ $h$
$2$ $h$ $45$ $min$
$5$ $h$
$3$ $h$ $45$ $min$
14.
В $ΔABC$ $AL$ е ъглополовяща. Големината на \(\sphericalangle ALB\) е:
70°
75°
95°
85°
15.
Моторна лодка изминава разстоянието между две пристанища по течението за 3 часа, а срещу течението – за 4 часа. Ако скоростта на течението е 6 км/ч, то разстоянието между пристанищата е:
42 км
126 км
144 км
168 км
16.
Две от страните на триъгълник са с дължини 5 cm и 7 cm, а третата има дължина, която се изразява с естествено число сантиметри. Броят на триъгълниците, които отговарят на това условие, е:
7
10
8
9
17.
Бабата на Камен го поканила за обяд в 12 часá. След като избрал маршрута, той преценил, че ако тръгне в 10 часá и 30 минути с ролери, ще закъснее с 15 минути. Затова Камен тръгнал в 10 часá и 30 минути с велосипед по същия маршрут и пристигнал с 20 минути по-рано от уречения час. Скоростта на Камен с ролери е със 7 кm/h по-малка, отколкото скоростта му с велосипед. Колко километра е маршрутът от дома на Камен до дома на баба му?
25 km
24,5 km
25,5 km
24 km
18.
На чертежа $CD$ е височина на правоъгълния $ΔABC$ към хипотенузата му $AB$. Точката M е среда на страната $AC$, а точката $N$ е среда на страната $BC$. Ако $AC = 6$ $cm$ и $BC = $8$ $cm$, лицето на $ΔDN$M е:
14
cm
²
12
cm
²
7
cm
²
6
cm
²
Диагоналите на четириъгълника $ABCD$ ($AB$ \( \neq \) $BC$) се пресичат в точка $O$. Диагоналът $AC$ е ъглополовяща на \(\sphericalangle BAD\) и на \(\sphericalangle BCD\).
19.
Намерете мярката на \(\sphericalangle AOD\)
20.
Намерете и запишете (в кв.см) лицето на четириъгълника
ABCD.
21.
Намерете и запишете (в см) обиколката на четириъгълника
ABCD.
22.
Намерете и запишете отсечката, която е равна на отсечката
AD
.
На диаграмата е показан броят на продадените леки автомобили от една автокъща през месеците април, май, юни и юли.
23.
През кой от месеците продажбите на автомобили нарастват двойно спрямо предния месец?
24.
Каква част от общия брой продадени автомобили за четирите месеца са тези, които са продадени през април?
\( \frac 1 4 \)
\( \frac 1 6 \)
0,4
0,2
25.
Колко автомобила са продавани средно за месец през периода май – юли?
26.
С колко процента е нараснала продажбата на леки автомобили през юли спрямо юни?