Решени тестове
Вход
Учебни помагала
Контакти
Вход с Facebook
4
ти
клас
5
и
клас
6
и
клас
7
и
клас
8
и
клас
9
и
клас
12
и
клас
10
и
клас
Езици
Програмиране
Занимателни тестове
Тест по математика за VII клас, 2020-случайни въпроси
НАЦИОНАЛНО ВЪНШНО ОЦЕНЯВАНЕ ПО МАТЕМАТИКА – VII клас
Примерен тест със
с
лучайни въпроси
, модул 1
7
и
клас - Математика - Външно оценяване
1.
Изразът $x + \frac{1}{4}$ е тъждествено равен на:
$x+0,25$
$x+1,4$
$4x+1$
$x+4$
2.
Изразът $(1 − 2x)^2$ е тъждествено равен на:
$1 − 4x^2$
$1 − 4x − 4x^2$
$1 − 4x + 4x^2$
$1 + 4x^2$
3.
Многочленът $k^2 − 36$ е тъждествено равен на:
$2(k − 18)$
$(k − 6)^2$
$(k − 18)(k + 18)$
$(k − 6)(k + 6)$
4.
Кое от неравенствата НЯМА решение?
$t − 2t < t$
$t − t < −1$
$t ≤ 3t − 2t$
$0t < 1 − t$
5.
Коренът на уравнението $2 – 2x = \frac{1}{2}$ е:
$\frac{3}{4}$
$1\frac{1}{4}$
$1\frac{1}{2}$
$0$
6.
На чертежа $△ABC$ е разностранен. Ако $AO = OB$, то точка $O$ лежи на:
височината през $C$ към $AB$
ъглополовящата на \(\sphericalangle ACB\)
симетралата на страната $AB$
медианата през $C$ към $AB$
7.
На чертежа правите $a$ и $b$ са успоредни. Ъгъл $α$ е равен на:
115°
75°
105°
85°
8.
Корените на уравнението $2 |1 – x| – 5 = –1$ са:
–1 и 3
–1 и –3
1 и –3
1 и 3
9.
Колко грама захар има в 500 грама 5% захарен разтвор?
250
100
5
25
10.
Мярката на \(\sphericalangle BAC\) от чертежа е:
50°
80°
10°
40°
11.
Изразът $(a – 1)^3 – (a – 1)(a^2 + a + 1)$ е тъждествено равен на:
$0$
$–3a^2 + 3a$
$3a^2 + 3a$
$–2$
12.
Посочете едно цяло число и едно дробно число, които са решения на неравенството $9 ≤ –3x$.
–2, –2.5
–27, –2.2
–3, –4.3
2, 2.5
13.
Басейн се пълни от два крана. Единият може да го напълни за 20 минути, а другият – за 30 минути. За колко минути ще се напълни басейнът, ако се отворят и двата крана едновременно?
24
12
50
15
14.
На чертежа $ΔABC$ е правоъгълен, $CM$ е медиана към хипотенузата $AB$, $CH$ е височина към хипотенузата, $CM = BC$ и $CH = 3$ $cm$. Дължината на страната $AC$ е:
6 cm
5 cm
4 cm
3 cm
15.
След намаление на цената с 20% готварска печка струва 220 лв. Цената на печката
преди намалението е била:
240 лв.
275 лв.
1100 лв.
264 лв.
16.
Цената за пътуване с такси се определя по формулата $C = 1,20 + 0,80.k$, където $k$ са изминатите километри, а $C$ е цената в левове. От тази формула изминатите километри $k$ за дадена цена $С$ се определят така:
$k = 0,80.C – 1,20$
$k = (C – 1,20):0,80$
$k = (C + 1,20).0,80$
$k = C:2,00$
17.
След като похарчил $\frac{4}{5}$ от парите, които имал, на Мони му останали 20 лева. Колко
лева е похарчил Мони?
100
25
80
16
18.
На чертежа $CD$ е височина на правоъгълния $ΔABC$ към хипотенузата му $AB$. Точката M е среда на страната $AC$, а точката $N$ е среда на страната $BC$. Ако $AC = 6$ $cm$ и $BC = $8$ $cm$, лицето на $ΔDN$M е:
12
cm
²
7
cm
²
14
cm
²
6
cm
²
За равнобедрения $ΔABC$ е дадено, че \(\sphericalangle ACB\) = 120° и $AL$ е ъглополовяща на \(\sphericalangle BAC\). На страната $AB$ е взета точка $M$ така, че $AM = AC$.
19.
Намерете големината на \(\sphericalangle ALM\) в градуси.
45°
55°
60°
35°
20.
Ако $CL = m$ и $BL = n$, намерете периметърът на $ΔMBL$.
$3m + n$
$m + 3n$
$2n + m$
$2m + n$
Диаграмата показва броя на учениците стипендианти за учебната 2018/2019 и 2019/2020 година от едно училище.
21.
Какво е отношението на броя на учениците, получили стипендии през 2018/2019 година, към този през 2019/2020 година?
\( \frac 5 7 \)
\( \frac 3 4\)
\( \frac 4 5 \)
\( \frac {31} {41}\)
22.
Рaзмерът на една месечна стипендия през 2018/2019 г. е бил 105 лева, а през 2019/2020 г. – 135 лева. Всеки от стипендиантите получава стипендия през 10 от дванайсетте месеца на учебната година. Колко лева са необходими, за да се изплатят стипендиите общо за двете учебни години в училището?