Решени тестове
Вход
Учебни помагала
Контакти
Вход с Facebook
4
ти
клас
5
и
клас
6
и
клас
7
и
клас
8
и
клас
9
и
клас
12
и
клас
10
и
клас
Езици
Програмиране
Занимателни тестове
Тест по математика за VII клас, 2020-случайни въпроси
НАЦИОНАЛНО ВЪНШНО ОЦЕНЯВАНЕ ПО МАТЕМАТИКА – VII клас
Примерен тест със
с
лучайни въпроси
, модул 1
7
и
клас - Математика - Външно оценяване
1.
Стойността на израза $12 – (2,5 – b)$ при $b = –2,5$ е:
7
12
17
8
2.
Разликата 25.25 – 5.5 е равна на произведението:
20.20
20.30
25.20.5
25.25.25
3.
Турист изкачва един връх за 6 чàса със скорост $x$ km/h и се връща обратно за 3 пъти по-малко време, като се движи с 4 km/h по-бързо. Уравнението, което изразява тази зависимост, е:
$6x=2(x-4)$
$6x=3(x+4)$
$6x=3(x-4)$
$6x=2(x+4)$
4.
Кое от неравенствата НЯМА решение?
$t − t < −1$
$0t < 1 − t$
$t − 2t < t$
$t ≤ 3t − 2t$
5.
Коренът на уравнението $2 – 2x = \frac{1}{2}$ е:
$0$
$1\frac{1}{2}$
$1\frac{1}{4}$
$\frac{3}{4}$
6.
На чертежа $AC = BC$. Мярката на \(\sphericalangle ACB\) е:
25°
80°
50°
75°
7.
Мярката на \(\sphericalangle BCM\) от чертежа е:
110°
80°
100°
140°
8.
Корените на уравнението $2 |1 – x| – 5 = –1$ са:
–1 и –3
1 и –3
1 и 3
–1 и 3
9.
Колко грама захар има в 500 грама 5% захарен разтвор?
25
5
250
100
10.
В $ΔABC$ $BM$ е медиана. Върху лъча $BM$ е взета точка $P$ така, че $ΔAMP \cong ΔCMB$. Ако \(\sphericalangle ABM\) = 30° и \(\sphericalangle APB\) = 40°, на колко градуса е равен \(\sphericalangle ABC\)?
110°
30°
70°
40°
11.
Многочленът $2(2y − 5) − 4y(2y − 5)$ е тъждествено равен на:
$2(2y − 5)(1 − 2y)$
$−2y(2y − 5)$
$4(2y − 5)(1 − y)$
$2(2y − 5)(1 + 2y)$
12.
Коренът на уравнението $(x − 1)^2 − x(x − 1) = 0$ е:
−2
1
1
2
13.
Басейн се пълни от два крана. Единият може да го напълни за 20 минути, а другият – за 30 минути. За колко минути ще се напълни басейнът, ако се отворят и двата крана едновременно?
24
15
50
12
14.
На чертежа $ΔABC$ е правоъгълен, $CM$ е медиана към хипотенузата $AB$, $CH$ е височина към хипотенузата, $CM = BC$ и $CH = 3$ $cm$. Дължината на страната $AC$ е:
6 cm
4 cm
3 cm
5 cm
15.
Моторна лодка изминава разстоянието между две пристанища по течението за 3 часа, а срещу течението – за 4 часа. Ако скоростта на течението е 6 км/ч, то разстоянието между пристанищата е:
42 км
144 км
168 км
126 км
16.
Ученици от едно училище купили 40 билета за театър за 488 лева. Един билет на партера струва 14 лева, а един билет на балкона струва 10 лева. По колко билета са купили от двата вида?
22 и 18
25 и 15
24 и 16
23 и 17
17.
Бабата на Камен го поканила за обяд в 12 часá. След като избрал маршрута, той преценил, че ако тръгне в 10 часá и 30 минути с ролери, ще закъснее с 15 минути. Затова Камен тръгнал в 10 часá и 30 минути с велосипед по същия маршрут и пристигнал с 20 минути по-рано от уречения час. Скоростта на Камен с ролери е със 7 кm/h по-малка, отколкото скоростта му с велосипед. Колко километра е маршрутът от дома на Камен до дома на баба му?
25,5 km
24,5 km
24 km
25 km
18.
На чертежа $CD$ е височина на правоъгълния $ΔABC$ към хипотенузата му $AB$. Точката M е среда на страната $AC$, а точката $N$ е среда на страната $BC$. Ако $AC = 6$ $cm$ и $BC = $8$ $cm$, лицето на $ΔDN$M е:
6
cm
²
12
cm
²
7
cm
²
14
cm
²
За равнобедрения $ΔABC$ е дадено, че \(\sphericalangle ACB\) = 120° и $AL$ е ъглополовяща на \(\sphericalangle BAC\). На страната $AB$ е взета точка $M$ така, че $AM = AC$.
19.
Намерете големината на \(\sphericalangle ALM\) в градуси.
60°
55°
35°
45°
20.
Ако $CL = m$ и $BL = n$, намерете периметърът на $ΔMBL$.
$2n + m$
$m + 3n$
$3m + n$
$2m + n$
Спортните екипи на учениците в едно училище са четири вида, както са показани на диаграмата.
21.
Каква част от учениците
имат
в екипа си жълт цвят?
$\frac {1}{2}$
$\frac {1}{4}$
$\frac {2}{3}$
$\frac {1}{3}$
22.
Каква част от учениците
нямат
в екипа си червен цвят?
$\frac {5}{6}$
$\frac {1}{3}$
$\frac {2}{3}$
$\frac {7}{12}$
23.
Какъв е процентът на учениците, които имат син цвят в екипа си?
23%
35%
25%
20%
24.
Колко градуса е ъгълът на сектора на учениците с червено-сините екипи?
55°
60°
45°
57°