Решени тестове
Вход
Учебни помагала
Контакти
Вход с Facebook
4
ти
клас
5
и
клас
6
и
клас
7
и
клас
8
и
клас
9
и
клас
12
и
клас
10
и
клас
Езици
Програмиране
Занимателни тестове
Тест по математика за VII клас, 2020-случайни въпроси
НАЦИОНАЛНО ВЪНШНО ОЦЕНЯВАНЕ ПО МАТЕМАТИКА – VII клас
Примерен тест със
с
лучайни въпроси
, модул 1
7
и
клас - Математика - Външно оценяване
1.
Ако $b=\frac{1}{6}$, то $(b–1)–3(1–b)+4(2b–1)$ е равно на:
$–\frac{4}{6}$
$\frac{4}{6}$
$–6$
$6$
2.
Кое числово равенство е вярно?
$\frac{1}{3} + \frac{1}{5} = \frac{1+1}{3.5}$
$\frac{1}{3} + \frac{1}{5} = \frac{1+1}{3+5}$
$\frac{1}{3} + \frac{1}{5} = \frac{1}{3+5}$
$\frac{1}{3} + \frac{1}{5} = \frac{5+3}{3.5}$
3.
При $a=–1$ най-малка стойност има изразът:
$a^3$
$a^2$
$a^2–2$
$a^3–1$
4.
Коренът на уравнението $3(4 – x) = –4$ е:
$–\frac{4}{9}$
$16$
$8$
$\frac{16}{3}$
5.
Равенството$(3x–2)^2=(*)–12x+4$ е тъждество, ако (*) се замени с едночлена:
$9x$
$9x^2$
$3x$
$3x^2$
6.
На чертежа $AC = BC$. Мярката на \(\sphericalangle ACB\) е:
50°
25°
75°
80°
7.
На чертежа $OL$
→
е ъглополовяща на \(\sphericalangle AOC\). Ако мярката на \(\sphericalangle AOC\) е с 40% по-голяма от мярката на \(\sphericalangle BOC\), то мярката на \(\sphericalangle BOL\) е:
127° 30'
52° 30'
75°
105°
8.
Числата 1 и 0 са корените на уравнението:
$|2x−1|=1$
$|2x−1|=−1$
$−|2x−1|=1$
$|2x−1|=0$
9.
Колко грама захар има в 500 грама 5% захарен разтвор?
250
100
5
25
10.
На чертежа $S$
1
и $S$
2
са симетралите съответно на страните $AC$ и $BC$ в триъгълника $ABC$. Ако $AB + KP = 24$ $cm$, дължината на $CO$ е:
$12$ $cm$
$4$ $cm$
$8$ $cm$
$6$ $cm$
11.
Изразът $(a – 1)^3 – (a – 1)(a^2 + a + 1)$ е тъждествено равен на:
$–3a^2 + 3a$
$–2$
$3a^2 + 3a$
$0$
12.
По-големият корен на уравнението $(x + 2)^3 – (3x + 2) (x + 4) = x (-x – 1)^2$ е:
–3
3
0
7
13.
Камион и лека кола тръгват едновременно един срещу друг от два пункта, които са на разстояние $400$ $km$ един от друг. Ако превозните средства се движат с постоянна скорост, съответно $60$ $km/h$ и $90$ $km/h$ , те ще се срещнат след:
$2$ $h$ $40$ $min$
$2$ $h$
$2$ $h$ $20$ $min$
$2$ $h$ $36$ $min$
14.
На чертежа $ΔABC$ е правоъгълен, $CM$ е медиана към хипотенузата $AB$, $CH$ е височина към хипотенузата, $CM = BC$ и $CH = 3$ $cm$. Дължината на страната $AC$ е:
6 cm
5 cm
4 cm
3 cm
15.
Моторна лодка изминава разстоянието между две пристанища по течението за 3 часа, а срещу течението – за 4 часа. Ако скоростта на течението е 6 км/ч, то разстоянието между пристанищата е:
168 км
42 км
144 км
126 км
16.
Две от страните на триъгълник са с дължини 5 cm и 7 cm, а третата има дължина, която се изразява с естествено число сантиметри. Броят на триъгълниците, които отговарят на това условие, е:
7
8
9
10
17.
От София до Бургас разстоянието по определен маршрут е 390 km. От двата града един срещу друг тръгнали две превозни средства, като едното превозно средство се движело със скорост, която е с 10 km/h по-голяма от скоростта на другото превозно средство. След 3 часа пътуване двете превозни средства се намирали на разстояние 24 km един от друг? Каква е възможно най-голямата скорост, с която се е движело по-бавното превозно средство?
65 km/h
60 km/h
54 km/h
64 km/h
18.
Ъглополовящите $AM$ и $BN$ в успоредника $ABCD$ разделят страната $DC$ на три равни части. Дължината на страната $BC$ е $a$ cm. Периметърът на успоредника $ABCD$ в сантиметри е равен на:
$16a$
$10a$
$8a$
$6a$
В $ΔABC$ отсечката $CH$ е височина и точка $Н$ е вътрешна за отсечката $АВ$. Точката $M$ е средата на $BC$ и $AH = CH = HM$. Точката $N$ е от отсечката $HB$ и е такава, че $HN = MN = NB$.
Даденият чертеж е само за илюстрация – не е начертан в мащаб и не е предназначен за директно измерване на дължини на отсечки и мерки на ъгли.
19.
Намерете мярката на \(\sphericalangle CAB\).
40°
50°
30°
45°
20.
Намерете мярката на \(\sphericalangle ABC\).
40°
45°
25°
30°
21.
Намерете отношението $HN : BN$.
3:2
1:3
2:3
2:1
22.
Намерете отношението на лицата $S$
ΔNMH
: $S$
ΔCMH
.
3:2
1:3
2:3
3:1
Диаграмата показва броя на учениците стипендианти за учебната 2018/2019 и 2019/2020 година от едно училище.
23.
Какво е отношението на броя на учениците, получили стипендии през 2018/2019 година, към този през 2019/2020 година?
\( \frac {31} {41}\)
\( \frac 3 4\)
\( \frac 5 7 \)
\( \frac 4 5 \)
24.
Рaзмерът на една месечна стипендия през 2018/2019 г. е бил 105 лева, а през 2019/2020 г. – 135 лева. Всеки от стипендиантите получава стипендия през 10 от дванайсетте месеца на учебната година. Колко лева са необходими, за да се изплатят стипендиите общо за двете учебни години в училището?