Тест по математика за VII клас, 2020-случайни въпроси


НАЦИОНАЛНО ВЪНШНО ОЦЕНЯВАНЕ ПО МАТЕМАТИКА – VII клас

Примерен тест със случайни въпроси, модул 1


7и клас - Математика - Външно оценяване
1. Изразът $x + \frac{1}{4}$ е тъждествено равен на:







2. Разликата 25.25 – 5.5 е равна на произведението:







3. Нормалният вид на $(x – 0,2)^2$ е многочленът:







4. Коренът на уравнението $3(4 – x) = –4$ е:







5. Уравнението $−x^2 = (4 − x)x$ е еквивалентно на:





6. На чертежа $△ABC$ е разностранен. Ако $AO = OB$, то точка $O$ лежи на:







7. Мярката на \(\sphericalangle BCM\) от чертежа е:








8. Корените на уравнението $2 |1 – x| – 5 = –1$ са:







9. Колко грама захар има в 500 грама 5% захарен разтвор?







10. Даден е равностранен триъгълник $ABC$. На лъча $BA$ е построена отсечката $AM = AC$ (точката $A$ е между точките $M$ и $B$) и на лъча $AB$ е построена отсечката $BN = BC$ (точката $B$ е между точките $N$ и $A$). Тогава \(\sphericalangle MCN\) е равен на:







11. Многочленът $2(2y − 5) − 4y(2y − 5)$ е тъждествено равен на:





12. Посочете едно цяло число и едно дробно число, които са решения на неравенството $9 ≤ –3x$.







13. Камион и лека кола тръгват едновременно един срещу друг от два пункта, които са на разстояние $400$ $km$ един от друг. Ако превозните средства се движат с постоянна скорост, съответно $60$ $km/h$ и $90$ $km/h$ , те ще се срещнат след:







14. На чертежа точката $D$ от отсечката $AC$ е избрана така, че $AD = DB = BC$. Мярката на \(\sphericalangle ABC\) e:







15. В трамвай могат да пътуват не повече от 70 души. Половината от пътниците, качили се в трамвая на първата спирка, заели някои от седящите места. След първата спирка броят на пътниците се увеличил с 8%. Колко пътници са се качили на първата спирка?





16. Ако едно естествено число умножим с 4 и от полученото произведение извадим 7,
ще се получи число, по-малко от 13. Сборът на всички естествени числа с това
свойство е:






17. Зар се хвърля три пъти и получените точки се събират. Броят на възможните сборове на трите числа е:





18. Ъглополовящите $AM$ и $BN$ в успоредника $ABCD$ разделят страната $DC$ на три равни части. Дължината на страната $BC$ е $a$ cm. Периметърът на успоредника $ABCD$ в сантиметри е равен на:

 







За равнобедрения $ΔABC$ е дадено, че \(\sphericalangle ACB\) = 120° и $AL$ е ъглополовяща на \(\sphericalangle BAC\). На страната $AB$ е взета точка $M$ така, че $AM = AC$.



19. Намерете големината на \(\sphericalangle ALM\) в градуси.







20. Ако $CL = m$ и $BL = n$, намерете периметърът на $ΔMBL$.







На диаграмата е показан броят на продадените леки автомобили от една автокъща през месеците април, май, юни и юли.



21. През кой от месеците продажбите на автомобили нарастват двойно спрямо предния месец?


22. Каква част от общия брой продадени автомобили за четирите месеца са тези, които са продадени през април?







23. Колко автомобила са продавани средно за месец през периода май – юли?


24. С колко процента е нараснала продажбата на леки автомобили през юли спрямо юни?